Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 41(6): 512-518, June 2008. tab
Article in English | LILACS | ID: lil-485844

ABSTRACT

Our aim was to determine the frequencies of the angiotensin-converting enzyme (ACE) gene alleles D and I and any associations to cardiovascular risk factors in a population sample from Rio de Janeiro, Brazil. Eighty-four adults were selected consecutively during a 6-month period from a cohort subgroup of a previous large cross-sectional survey in Rio de Janeiro. Anthropometric data and blood pressure measurements, echocardiogram, albuminuria, glycemia, lipid profile, and ACE genotype and serum enzyme activity were determined. The frequency of the ACE*D and I alleles in the population under study, determined by PCR, was 0.59 and 0.41, respectively, and the frequencies of the DD, DI, and II genotypes were 0.33, 0.51, and 0.16, respectively. No association between hypertension and genotype was detected using the Kruskal-Wallis method. Mean plasma ACE activity (U/mL) in the DD (N = 28), DI (N = 45) and II (N = 13) groups was 43 (in males) and 52 (in females), 37 and 39, and 22 and 27, respectively; mean microalbuminuria (mg/dL) was 1.41 and 1.6, 0.85 and 0.9, and 0.6 and 0.63, respectively; mean HDL cholesterol (mg/dL) was 40 and 43, 37 and 45, and 41 and 49, respectively, and mean glucose (mg/dL) was 93 and 108, 107 and 98, and 85 and 124, respectively. A high level of ACE activity and albuminuria, and a low level of HDL cholesterol and glucose, were found to be associated with the DD genotype. Finally, the II genotype was found to be associated with variables related to glucose intolerance.


Subject(s)
Female , Humans , Male , Middle Aged , Hypertension/enzymology , Hypertension/genetics , Lipids/blood , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic/genetics , Albuminuria/enzymology , Albuminuria/genetics , Body Mass Index , Brazil , Blood Glucose/genetics , Cohort Studies , Cross-Sectional Studies , Genotype , Hypertension/blood , Phenotype , Polymerase Chain Reaction , Risk Factors
2.
Genet. mol. res. (Online) ; 3(1): 64-75, Mar. 2004.
Article in English | LILACS | ID: lil-417584

ABSTRACT

The repertoire of 4,431 open reading frames (ORFs), eight rRNA operons and 98 tRNA genes of Chromobacterium violaceum must be expressed in a regulated manner for successful adaptation to a wide variety of environmental conditions. To accomplish this feat, the organism relies on protein machineries involved in transcription, RNA processing and translation. Analysis of the C. violaceum genome showed that transcription initiation, elongation and termination are performed by the five well-known RNA polymerase subunits, five categories of sigma 70 factors, one sigma 54 factor, as well as six auxiliary elongation and termination factors. RNA processing is performed by a variety of endonucleases and exonucleases, such as ribonuclease H, ribonuclease E, ribonuclease P, and ribonuclease III, in addition to poly(A) polymerase and specific methyltransferases and pseudouridine synthases. ORFs for all ribosomal proteins, except S22, were found. Only 19 aminoacyl-tRNA synthetases were found, in addition to three aminoacyl-tRNA synthetase-related proteins. Asparaginyl-tRNA (Asn) is probably obtained by enzymatic modification of a mischarged aminoacyl-tRNA. The translation factors IF-1, IF-2, IF-3, EF-Ts, EF-Tu, EF-G, RF-1, RF-2 and RF-3 are all present in the C. violaceum genome, although the absence of selB suggests that C. violaceum does not synthesize selenoproteins. The components of trans-translation, tmRNA and associated proteins, are present in the C. violaceum genome. Finally, a large number of ORFs related to regulation of gene expression were also found, which was expected, considering the apparent adaptability of this bacterium


Subject(s)
Adaptation, Physiological/genetics , Chromobacterium/genetics , Gene Expression Regulation, Bacterial/genetics , Chromobacterium/physiology , Open Reading Frames/genetics , Genome, Bacterial , RNA, Transfer/genetics , rRNA Operon , Gene Expression Regulation, Bacterial/physiology , Transcription, Genetic
3.
Mem. Inst. Oswaldo Cruz ; 92(6): 843-52, Nov.-Dec. 1997. ilus, graf
Article in English | LILACS | ID: lil-197226

ABSTRACT

Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantage of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2.770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease.


Subject(s)
Animals , Chromosome Mapping , Genome, Protozoan , Trypanosoma cruzi/genetics , Chromosomes, Artificial, Yeast , Clone Cells , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL